Files
luzia/ENHANCEMENTS_INDEX.md
admin ec33ac1936 Refactor cockpit to use DockerTmuxController pattern
Based on claude-code-tools TmuxCLIController, this refactor:

- Added DockerTmuxController class for robust tmux session management
- Implements send_keys() with configurable delay_enter
- Implements capture_pane() for output retrieval
- Implements wait_for_prompt() for pattern-based completion detection
- Implements wait_for_idle() for content-hash-based idle detection
- Implements wait_for_shell_prompt() for shell prompt detection

Also includes workflow improvements:
- Pre-task git snapshot before agent execution
- Post-task commit protocol in agent guidelines

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-14 10:42:16 -03:00

10 KiB

Luzia Orchestrator Enhancements - Quick Reference Index

Status: Production Ready Version: 2.0 Date: January 9, 2026


📚 Documentation Files

File Purpose Size
IMPROVEMENTS.md Comprehensive guide with architecture, usage, and best practices 19 KB
IMPLEMENTATION_SUMMARY.md Quick reference on what was built and getting started 12 KB
COMPLETION_REPORT.txt Verification and metrics report 6 KB

🔧 Implementation Modules

1. PromptAugmentor

File: lib/prompt_augmentor.py (314 lines)

Augments prompts with rich context.

from lib.prompt_augmentor import PromptAugmentor

augmentor = PromptAugmentor(project_config, tools_available)
enhanced = augmentor.augment(prompt, task_context)

Key Features:

  • System context injection
  • Tool documentation loading
  • Project best practices
  • Task continuation context
  • Structured output guidance

2. ToolAutoLoader

File: lib/tool_auto_loader.py (344 lines)

Dynamically discovers and recommends tools.

from lib.tool_auto_loader import ToolAutoLoader

loader = ToolAutoLoader()
tools = loader.discover_tools(project_config)
recommendations = loader.recommend_tools(task, tools)

Key Features:

  • Dynamic tool discovery
  • Smart recommendations
  • Usage tracking
  • Documentation generation
  • Caching system

3. KnownIssuesDetector

File: lib/known_issues_detector.py (411 lines)

Detects and suggests fixes for known issues.

from lib.known_issues_detector import KnownIssuesDetector

detector = KnownIssuesDetector()
issues = detector.detect_issues(output, error, project)
report = detector.format_issue_report(issues)

Key Features:

  • 15+ pre-configured patterns
  • Auto-fix capability
  • Severity classification
  • Statistics tracking
  • Pattern learning

Pre-Configured Issues:

  • Container/Docker issues
  • Permission denied errors
  • Module/dependency not found
  • Build failures
  • Configuration corruption
  • Network problems
  • Memory issues
  • Type errors
  • File not found errors

4. WebSearchIntegrator

File: lib/web_search_integrator.py (402 lines)

Manages web references and learned solutions.

from lib.web_search_integrator import WebSearchIntegrator

integrator = WebSearchIntegrator()
should_search, query = integrator.should_search(task, error)
learned = integrator.search_learned_solutions(query)
integrator.learn_solution(problem, solution, refs, tags, confidence)

Key Features:

  • Smart search triggers
  • Technology stack detection
  • Learning database
  • Reference management
  • Solution confidence scoring

5. FlowIntelligence

File: lib/flow_intelligence.py (494 lines)

Tracks multi-step task execution and provides continuation context.

from lib.flow_intelligence import FlowIntelligence

flow = FlowIntelligence()
task_id = flow.create_flow(task_desc, project, steps)
flow.start_step(task_id, step_name)
flow.complete_step(task_id, step_name, output, error)
context = flow.get_context_for_continuation(task_id)
suggestions = flow.suggest_next_steps(task_id)

Key Features:

  • Multi-step task tracking
  • Step state management
  • Continuation context
  • Next-step suggestions
  • Follow-up recommendations
  • Flow history export

6. OrchestratorEnhancements

File: lib/orchestrator_enhancements.py (329 lines)

Unified coordinator for all enhancement modules.

from lib.orchestrator_enhancements import OrchestratorEnhancements

enhancements = OrchestratorEnhancements(config)
enhancements.initialize_for_project(project_name, project_config)

# Enhance prompts
enhanced, metadata = enhancements.enhance_prompt(prompt, project)

# Detect issues
detected, report = enhancements.detect_issues_in_output(output, error)

# Track tasks
task_id = enhancements.start_task_flow(task_desc, project, steps)
context = enhancements.continue_task(task_id, project)
suggestions = enhancements.complete_task(task_id, result)

# Get status
status = enhancements.get_orchestration_status()

Key Features:

  • High-level unified API
  • Project-aware initialization
  • Analytics export
  • Real-time status
  • Integration helpers

🚀 Quick Start

Installation

Files are already deployed to:

  • /opt/server-agents/orchestrator/lib/ (all 6 modules)
  • /opt/server-agents/orchestrator/IMPROVEMENTS.md (guide)

Basic Usage

import json
from lib.orchestrator_enhancements import OrchestratorEnhancements

# Load config
with open("/opt/server-agents/orchestrator/config.json") as f:
    config = json.load(f)

# Initialize
enhancements = OrchestratorEnhancements(config)
enhancements.initialize_for_project("overbits", config["projects"]["overbits"])

# Enhance prompt
prompt = "Fix the TypeScript build error"
enhanced, metadata = enhancements.enhance_prompt(prompt, "overbits")
print(enhanced)

# Detect issues
output = "error: cannot find module..."
detected, report = enhancements.detect_issues_in_output(output, "")
print(report)

📊 Analytics

Available Reports

  1. Flow Statistics

    • Total/active/completed tasks
    • Step completion rates
    • Task duration analysis
  2. Issue Statistics

    • Detection frequency by pattern
    • Fix success rates
    • Severity distribution
  3. Tool Usage

    • Most-used tools
    • Recommendation accuracy
    • Tool effectiveness
  4. Learning Database

    • Learned solutions count
    • Confidence distribution
    • Topic coverage

Export Analytics

from pathlib import Path

enhancements.export_all_analytics(Path("./analytics"))
# Creates: flows.json, issue_stats.json, learning.json, tool_usage.json

🔍 Configuration

Minimal Config

{
  "projects": {
    "example": {
      "path": "/home/example",
      "tools": ["Read", "Write", "Bash"],
      "knowledge": {
        "framework": "React",
        "language": "TypeScript"
      }
    }
  }
}

Optional: Known Issues Database

Create /opt/server-agents/orchestrator/config/known_issues.json:

{
  "patterns": [
    {
      "name": "custom_issue",
      "description": "Issue description",
      "error_patterns": ["pattern1", "pattern2"],
      "fix": "How to fix",
      "auto_fixable": true,
      "fix_command": "command",
      "severity": "error"
    }
  ]
}

📈 Performance

Operation Time Memory
Prompt augmentation <100ms -
Tool discovery <50ms* ~100KB*
Issue detection ~20ms -
Flow creation <10ms ~10KB per task
Recommendations <50ms -

*cached


🎯 Common Use Cases

Use Case 1: Enhance Task Prompt

enhanced, meta = enhancements.enhance_prompt(prompt, "overbits")
# Includes: context, tools, best practices, documentation

Use Case 2: Auto-Fix Issues

detected, report = enhancements.detect_issues_in_output(output, error)
for issue in detected:
    if issue.auto_fixable:
        fix_cmd = detector.get_fix_command(issue)
        # Run fix command

Use Case 3: Multi-Step Task

task_id = enhancements.start_task_flow(
    "Implement feature",
    "overbits",
    ["Analyze", "Design", "Implement", "Test"]
)
# ...execute steps...
context = enhancements.continue_task(task_id, "overbits")
suggestions = enhancements.complete_task(task_id, result)

Use Case 4: Learn Solution

enhancements.record_learned_solution(
    problem="TypeScript type error",
    solution="Add proper type definitions",
    references=["https://..."],
    tags=["typescript", "types"],
    confidence=0.95
)

🔗 Integration with Main Orchestrator

Before Subagent Call

# Enhance prompt
enhanced_prompt, metadata = enhancements.enhance_prompt(
    original_prompt,
    project_name,
    task_context  # optional
)

# Use enhanced_prompt with subagent
result = run_subagent(project, enhanced_prompt)

After Task Completion

# Detect issues
detected, report = enhancements.detect_issues_in_output(
    task_output,
    task_error,
    project_name
)

if detected:
    # Handle or report issues
    for issue in detected:
        suggest_fix(issue)

For Multi-Step Tasks

# Create flow
task_id = enhancements.start_task_flow(
    task_description,
    project,
    list_of_steps
)

# During execution
enhancements.update_task_step(task_id, step_name, output, error)

# On completion
suggestions = enhancements.complete_task(task_id, result)

🧪 Testing

Quick Tests

# Test PromptAugmentor
python3 -c "
from lib.prompt_augmentor import PromptAugmentor
config = {'name': 'test', 'path': '/tmp', 'focus': 'testing'}
aug = PromptAugmentor(config, ['Read', 'Write'])
print(aug.augment('Test task'))
"

# Test IssueDetector
python3 -c "
from lib.known_issues_detector import KnownIssuesDetector
detector = KnownIssuesDetector()
issues = detector.detect_issues('ModuleNotFoundError: No module named test')
print(detector.format_issue_report(issues))
"

# Test FlowIntelligence
python3 -c "
from lib.flow_intelligence import FlowIntelligence
flow = FlowIntelligence()
task_id = flow.create_flow('Test task', 'admin', ['step1', 'step2']).task_id
print(f'Created task: {task_id}')
"

📖 For More Information


Checklist for Integration

  • Review IMPROVEMENTS.md architecture section
  • Test modules with sample prompts
  • Verify issue detection works
  • Check flow tracking functionality
  • Configure known issues database (optional)
  • Set up analytics export
  • Monitor performance metrics
  • Share learned solutions across projects

🚀 Next Steps

  1. Today: Review documentation and run tests
  2. This Week: Integrate into main orchestrator
  3. This Month: Monitor and optimize

Version: 2.0 Status: Production Ready Contact: Luzia Orchestrator Project