#!/usr/bin/env python3 """ Advanced Prompt Augmentation Techniques Implements latest research on prompt engineering for different task types: 1. Chain-of-Thought (CoT): Step-by-step reasoning 2. Few-Shot Learning: Examples for task clarification 3. Role-Based Prompting: Set specific persona/expertise 4. System Prompts: Foundational constraints and guidelines 5. Context Hierarchies: Prioritized context levels 6. Task-Specific Patterns: Domain-optimized prompt structures 7. Dynamic Difficulty: Adaptive prompting based on complexity References: - Wei et al. (2022): Chain-of-Thought Prompting Elicits Reasoning in Large Language Models - Brown et al. (2020): Language Models are Few-Shot Learners - Kojima et al. (2022): Large Language Models are Zero-Shot Reasoners - Reynolds & McDonell (2021): Prompt Programming for Large Language Models - Zhong et al. (2023): How Can We Know What Language Models Know? """ import json from typing import Dict, List, Optional, Any, Tuple from enum import Enum from dataclasses import dataclass, asdict from datetime import datetime class TaskType(Enum): """Enumeration of task types with specific augmentation strategies""" ANALYSIS = "analysis" DEBUGGING = "debugging" IMPLEMENTATION = "implementation" RESEARCH = "research" REFACTORING = "refactoring" PLANNING = "planning" REVIEW = "review" OPTIMIZATION = "optimization" TESTING = "testing" DOCUMENTATION = "documentation" SECURITY = "security" class PromptStrategy(Enum): """Prompt augmentation strategies""" CHAIN_OF_THOUGHT = "chain_of_thought" FEW_SHOT = "few_shot" ROLE_BASED = "role_based" SYSTEM_INSTRUCTION = "system_instruction" TREE_OF_THOUGHT = "tree_of_thought" SELF_CONSISTENCY = "self_consistency" UNCERTAINTY_AWARE = "uncertainty_aware" @dataclass class PromptContext: """Structured prompt context with priority levels""" task_type: TaskType primary: Dict[str, str] # Highest priority - directly relevant secondary: Dict[str, str] # Important context tertiary: Dict[str, str] # Nice to have examples: List[Dict[str, str]] # Few-shot examples role: str = "Expert Analyst" complexity_level: int = 1 # 1-5 scale timestamp: str = None def __post_init__(self): if self.timestamp is None: self.timestamp = datetime.now().isoformat() class ChainOfThoughtEngine: """Implements Chain-of-Thought prompting for complex reasoning""" @staticmethod def generate_cot_prompt(task: str, complexity: int = 1) -> str: """ Generate Chain-of-Thought prompt encouraging step-by-step reasoning. Args: task: The task to decompose complexity: 1-5 scale for reasoning depth """ depth = min(complexity, 5) num_steps = 3 + depth prompt = f"""Please solve this step-by-step: {task} **Your Reasoning Process:** Think through this problem systematically. Break it into {num_steps} logical steps: """ for i in range(1, num_steps + 1): prompt += f"Step {i}: [What is the {i}th logical component of this problem?]\n" prompt += """ After completing each step, briefly verify your logic before moving to the next. Explicitly state any assumptions you're making. If you encounter conflicting information, address it directly. **Final Answer:** Summarize your complete solution, clearly showing how each step led to your conclusion.""" return prompt @staticmethod def generate_subquestion_cot(task: str, context: str = "") -> str: """ Generate intermediate question-based Chain-of-Thought. Breaks complex problems into subquestions to improve reasoning. Reference: Wei et al. (2022), Kojima et al. (2022) """ prompt = f"""Break down and answer this problem systematically: **Main Question:** {task} {f"**Context:**{chr(10)}{context}" if context else ""} **Approach:** 1. Identify the key subquestions that must be answered to solve the main problem 2. Answer each subquestion with clear reasoning 3. Combine the answers into a comprehensive solution 4. Verify your solution makes sense in context Please work through this methodically, showing your thinking at each stage.""" return prompt class FewShotExampleBuilder: """Constructs few-shot examples for better task understanding""" @staticmethod def build_examples_for_task(task_type: TaskType, num_examples: int = 3) -> List[Dict[str, str]]: """Build task-specific few-shot examples""" examples_library = { TaskType.ANALYSIS: [ { "input": "Analyze the performance bottleneck in this authentication flow", "approach": "1) Identify critical path, 2) Measure time per step, 3) Locate worst performer, 4) Suggest optimization", "output_structure": "Current bottleneck: [X]. Root cause: [Y]. Recommended fix: [Z]. Expected improvement: [percentage]%" }, { "input": "Analyze security implications of storing user tokens in localStorage", "approach": "1) Enumerate attack vectors, 2) Assess likelihood and impact, 3) Compare to alternatives, 4) Make recommendation", "output_structure": "Risks: [list]. Severity: [high/medium/low]. Better approach: [X]. Implementation effort: [Y]" }, { "input": "Analyze code complexity and maintainability of this module", "approach": "1) Calculate metrics (cyclomatic, cognitive), 2) Identify problematic patterns, 3) Assess testing difficulty, 4) Recommend refactoring", "output_structure": "Complexity score: [X]/10. Hot spots: [list]. Refactoring priority: [high/medium/low]" } ], TaskType.DEBUGGING: [ { "input": "Fix intermittent race condition in async handler", "approach": "1) Understand race condition mechanics, 2) Create minimal reproducible case, 3) Identify ordering issue, 4) Add synchronization, 5) Test thoroughly", "output_structure": "Root cause: [X]. Fix location: [file:line]. Change: [code diff]. Test strategy: [steps]" }, { "input": "Debug memory leak in event listeners", "approach": "1) Profile memory usage, 2) Identify growth pattern, 3) Find leaked references, 4) Remove cleanup, 5) Verify fix", "output_structure": "Leak type: [X]. Source: [component]. Fix: [cleanup code]. Verification: [test approach]" }, { "input": "Fix undefined behavior in concurrent map access", "approach": "1) Reproduce concurrency issue, 2) Find synchronization gap, 3) Add proper locking, 4) Test with concurrent load", "output_structure": "Issue: [X]. Cause: [Y]. Fix: [locking mechanism]. Verification: [concurrency test]" } ], TaskType.IMPLEMENTATION: [ { "input": "Implement rate limiting for API endpoint", "approach": "1) Define strategy (sliding window/token bucket), 2) Choose storage (in-memory/redis), 3) Implement core logic, 4) Add tests", "output_structure": "Strategy: [X]. Storage: [Y]. Key metrics tracked: [list]. Test coverage: [percentage]%" }, { "input": "Add caching layer to database queries", "approach": "1) Identify hot queries, 2) Choose cache (redis/memcached), 3) Set TTL strategy, 4) Handle invalidation, 5) Monitor hit rate", "output_structure": "Cache strategy: [X]. Expected hit rate: [Y]%. Hit cost: [Z]ms. Invalidation: [method]" }, { "input": "Implement graceful shutdown with in-flight request handling", "approach": "1) Define shutdown signal handling, 2) Stop accepting new requests, 3) Wait for in-flight, 4) Timeout and force quit", "output_structure": "Signal handling: [X]. Timeout: [Y]s. Graceful drain: [code]. Forced quit: [code]" } ], TaskType.REFACTORING: [ { "input": "Reduce cognitive complexity in 500-line function", "approach": "1) Map control flow, 2) Extract conditional branches, 3) Create helper methods, 4) Test each change, 5) Verify coverage", "output_structure": "Original complexity: [X]. Target: [Y]. Extracted methods: [list]. Final complexity: [Z]" } ], TaskType.TESTING: [ { "input": "Write comprehensive tests for authentication module", "approach": "1) Identify happy path, 2) List edge cases, 3) Test error conditions, 4) Add integration tests, 5) Measure coverage", "output_structure": "Test count: [X]. Coverage: [Y]%. Critical paths: [Z]. Integration tests: [list]" } ] } examples = examples_library.get(task_type, []) return examples[:num_examples] @staticmethod def format_examples_for_prompt(examples: List[Dict[str, str]]) -> str: """Format examples into prompt text""" if not examples: return "" formatted = "\n**Examples of this task type:**\n\n" for i, example in enumerate(examples, 1): formatted += f"Example {i}:\n" formatted += f"- Input: {example.get('input', 'N/A')}\n" formatted += f"- Approach: {example.get('approach', 'N/A')}\n" formatted += f"- Output structure: {example.get('output_structure', 'N/A')}\n\n" return formatted class RoleBasedPrompting: """Role-based prompting for expertise-specific responses""" ROLES = { TaskType.ANALYSIS: { "role": "Expert Systems Analyst", "expertise": "Systems performance, architecture, and optimization", "constraints": "Provide quantifiable metrics and data-driven insights" }, TaskType.DEBUGGING: { "role": "Expert Debugger", "expertise": "Root cause analysis, system behavior, and edge cases", "constraints": "Always consider concurrency, timing, and resource issues" }, TaskType.IMPLEMENTATION: { "role": "Senior Software Engineer", "expertise": "Production-quality code, maintainability, and scalability", "constraints": "Write defensive code with error handling and clear design" }, TaskType.SECURITY: { "role": "Security Researcher", "expertise": "Threat modeling, vulnerability analysis, and secure design", "constraints": "Assume adversarial input and verify all assumptions" }, TaskType.RESEARCH: { "role": "Research Scientist", "expertise": "Literature review, systematic analysis, and knowledge synthesis", "constraints": "Cite sources and distinguish between established facts and speculation" }, TaskType.PLANNING: { "role": "Project Architect", "expertise": "System design, risk assessment, and strategic planning", "constraints": "Consider dependencies, timeline, and team constraints" }, TaskType.REVIEW: { "role": "Code Reviewer", "expertise": "Code quality, best practices, and maintainability", "constraints": "Focus on correctness, readability, and adherence to standards" }, TaskType.OPTIMIZATION: { "role": "Performance Engineer", "expertise": "Performance bottlenecks, optimization techniques, and profiling", "constraints": "Measure before and after, prioritize high-impact improvements" } } @staticmethod def get_role_prompt(task_type: TaskType) -> str: """Generate role-based system prompt""" role_info = RoleBasedPrompting.ROLES.get( task_type, RoleBasedPrompting.ROLES[TaskType.ANALYSIS] # Default role ) return f"""You are a {role_info['role']} with expertise in {role_info['expertise']}. Your responsibilities: - Provide expert-level analysis and solutions - Apply industry best practices consistently - Question assumptions and verify conclusions - Explain your reasoning clearly Key constraint: {role_info['constraints']} Maintain this expertise level throughout your response.""" class ContextHierarchy: """Manages hierarchical context with priority-based injection""" def __init__(self): self.context_levels = { "critical": [], # Must always include "high": [], # Include unless very constrained "medium": [], # Include if space allows "low": [], # Include only with extra space } def add_context(self, level: str, context: str) -> None: """Add context at specified priority level""" if level in self.context_levels: self.context_levels[level].append(context) def build_hierarchical_context(self, max_tokens: int = 2000) -> str: """Build context respecting hierarchy and token budget""" context_str = "" token_count = 0 target_tokens = int(max_tokens * 0.8) # Leave room for task # Always include critical for item in self.context_levels["critical"]: context_str += item + "\n\n" token_count += len(item.split()) # Include high priority for item in self.context_levels["high"]: item_tokens = len(item.split()) if token_count + item_tokens < target_tokens: context_str += item + "\n\n" token_count += item_tokens # Include medium if space permits for item in self.context_levels["medium"]: item_tokens = len(item.split()) if token_count + item_tokens < target_tokens: context_str += item + "\n\n" token_count += item_tokens return context_str.strip() class TaskSpecificPatterns: """Task-specific prompt patterns optimized for different domains""" @staticmethod def get_analysis_pattern(topic: str, focus_areas: List[str], depth: str = "comprehensive") -> str: """Optimized pattern for analysis tasks""" return f"""# Analysis Task: {topic} ## Objective Provide a {depth} analysis focusing on: {chr(10).join(f'- {area}' for area in focus_areas)} ## Analysis Framework 1. **Current State**: Describe what exists now 2. **Key Metrics**: Quantify important aspects 3. **Issues/Gaps**: Identify problems and gaps 4. **Root Causes**: Explain why issues exist 5. **Opportunities**: What could improve 6. **Risk Assessment**: Potential downsides 7. **Recommendations**: Specific, actionable next steps ## Output Requirements - Use concrete data and examples - Prioritize findings by impact - Distinguish facts from interpretations - Provide confidence levels - Include supporting evidence""" @staticmethod def get_debugging_pattern(symptom: str, affected_component: str, severity: str = "high") -> str: """Optimized pattern for debugging tasks""" return f"""# Debugging Task: {affected_component} ## Symptom {symptom} ## Severity: {severity} ## Systematic Debugging Approach 1. **Understand the Failure**: What goes wrong? When? Under what conditions? 2. **Boundary Testing**: What works? What doesn't? Where's the boundary? 3. **Hypothesis Formation**: What could cause this? 4. **Evidence Gathering**: What would confirm/refute each hypothesis? 5. **Root Cause Identification**: Which hypothesis is correct? 6. **Solution Verification**: Test the fix thoroughly 7. **Prevention**: How to prevent recurrence? ## Investigation Priorities - Reproducibility: Can we reliably trigger the issue? - Isolation: What's the minimal failing case? - Impact Scope: What systems are affected? - Concurrency: Are timing/ordering factors involved? ## Output Requirements - Root cause with high confidence - Minimal reproducible test case - Proposed fix with rationale - Verification strategy - Regression prevention measures""" @staticmethod def get_implementation_pattern(feature: str, requirements: List[str], constraints: List[str] = None) -> str: """Optimized pattern for implementation tasks""" constraints = constraints or [] return f"""# Implementation Task: {feature} ## Requirements {chr(10).join(f'- {req}' for req in requirements)} {f"## Constraints{chr(10)}{chr(10).join(f'- {c}' for c in constraints)}" if constraints else ""} ## Implementation Strategy 1. **Design Phase**: Architecture, interfaces, design patterns 2. **Implementation Phase**: Code, error handling, documentation 3. **Testing Phase**: Unit, integration, edge case testing 4. **Integration Phase**: How it fits with existing code 5. **Deployment Phase**: Rollout strategy and monitoring ## Code Quality Requirements - Error handling for all failure modes - Clear, self-documenting code - No external dependencies without justification - Performance within acceptable bounds - Security reviewed for input validation ## Testing Requirements - Unit test coverage for core logic - Edge case and error path testing - Integration tests with dependent systems - Performance/load testing if applicable ## Output Deliverables 1. Detailed implementation plan 2. Complete code implementation 3. Comprehensive test suite 4. Documentation updates 5. Deployment considerations and rollout plan""" @staticmethod def get_planning_pattern(objective: str, scope: str, constraints: List[str] = None) -> str: """Optimized pattern for planning tasks""" constraints = constraints or [] return f"""# Planning Task: {objective} ## Scope {scope} {f"## Constraints{chr(10)}{chr(10).join(f'- {c}' for c in constraints)}" if constraints else ""} ## Planning Framework 1. **Goal Clarity**: What are we trying to achieve? 2. **Success Criteria**: How will we know we succeeded? 3. **Resource Analysis**: What's needed (people, tools, time)? 4. **Dependency Mapping**: What must happen in order? 5. **Risk Assessment**: What could go wrong? 6. **Contingency Planning**: How to handle risks? 7. **Communication Plan**: How to keep stakeholders informed? ## Output Requirements - Clear, prioritized action items - Realistic milestones and dependencies - Risk assessment with mitigation strategies - Resource and timeline estimates - Success metrics and validation approach""" class PromptEngineer: """Main orchestrator for advanced prompt engineering""" def __init__(self): self.cot_engine = ChainOfThoughtEngine() self.few_shot = FewShotExampleBuilder() self.role_prompter = RoleBasedPrompting() self.patterns = TaskSpecificPatterns() def engineer_prompt(self, task: str, task_type: TaskType, strategies: List[PromptStrategy] = None, context: Optional[PromptContext] = None, max_prompt_length: int = 3000) -> Tuple[str, Dict[str, Any]]: """ Engineer an optimized prompt combining multiple strategies. Returns: (engineered_prompt, metadata) """ strategies = strategies or [ PromptStrategy.SYSTEM_INSTRUCTION, PromptStrategy.CHAIN_OF_THOUGHT, PromptStrategy.FEW_SHOT, PromptStrategy.ROLE_BASED ] sections = [] metadata = { "task_type": task_type.value, "strategies_used": [s.value for s in strategies], "estimated_tokens": 0 } # 1. System instruction if PromptStrategy.SYSTEM_INSTRUCTION in strategies: system_prompt = f"""You are an expert at solving {task_type.value} problems. Apply best practices, think step-by-step, and provide clear explanations.""" sections.append(("## System Instructions", system_prompt)) # 2. Role-based prompt if PromptStrategy.ROLE_BASED in strategies: role_prompt = self.role_prompter.get_role_prompt(task_type) sections.append(("## Your Role & Expertise", role_prompt)) # 3. Task-specific pattern task_pattern = self._get_task_pattern(task, task_type) if task_pattern: sections.append(("## Task Structure", task_pattern)) # 4. Few-shot examples if PromptStrategy.FEW_SHOT in strategies: examples = self.few_shot.build_examples_for_task(task_type, num_examples=2) if examples: examples_text = self.few_shot.format_examples_for_prompt(examples) sections.append(("## Learning from Examples", examples_text)) # 5. Chain-of-thought prompting if PromptStrategy.CHAIN_OF_THOUGHT in strategies: complexity = context.complexity_level if context else 1 cot_prompt = self.cot_engine.generate_cot_prompt(task, complexity) sections.append(("## Reasoning Process", cot_prompt)) # 6. The actual task sections.append(("## Your Task", f"Execute: {task}")) # Build final prompt final_prompt = "\n\n".join(f"{title}\n{content}" for title, content in sections) # Calculate metadata metadata["estimated_tokens"] = len(final_prompt.split()) return final_prompt, metadata def _get_task_pattern(self, task: str, task_type: TaskType) -> Optional[str]: """Get task-specific pattern based on task type""" patterns = { TaskType.ANALYSIS: lambda: self.patterns.get_analysis_pattern( "Analysis", ["Key findings", "Implications", "Recommendations"] ), TaskType.DEBUGGING: lambda: self.patterns.get_debugging_pattern( task, "System", "High" ), TaskType.IMPLEMENTATION: lambda: self.patterns.get_implementation_pattern( task, ["Functional requirements", "Non-functional requirements"] ), TaskType.PLANNING: lambda: self.patterns.get_planning_pattern( task, "Comprehensive planning" ), } pattern_func = patterns.get(task_type) return pattern_func() if pattern_func else None def suggest_strategies(self, task_type: TaskType, complexity: int = 1) -> List[PromptStrategy]: """Suggest strategies based on task type and complexity""" base_strategies = [ PromptStrategy.SYSTEM_INSTRUCTION, PromptStrategy.ROLE_BASED, ] if complexity >= 2: base_strategies.append(PromptStrategy.CHAIN_OF_THOUGHT) if complexity >= 3: base_strategies.append(PromptStrategy.FEW_SHOT) if complexity >= 4: base_strategies.append(PromptStrategy.TREE_OF_THOUGHT) return base_strategies # Export for use in other modules __all__ = [ 'TaskType', 'PromptStrategy', 'PromptContext', 'ChainOfThoughtEngine', 'FewShotExampleBuilder', 'RoleBasedPrompting', 'ContextHierarchy', 'TaskSpecificPatterns', 'PromptEngineer', ]